3.59 \(\int \frac {x (a+b \text {csch}^{-1}(c x))}{\sqrt {d+e x}} \, dx\)

Optimal. Leaf size=474 \[ -\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {8 b d^2 \sqrt {c^2 x^2+1} \sqrt {\frac {\sqrt {-c^2} (d+e x)}{\sqrt {-c^2} d+e}} \Pi \left (2;\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|\frac {2 e}{\sqrt {-c^2} d+e}\right )}{3 c e^2 x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {d+e x}}-\frac {8 b c d \sqrt {c^2 x^2+1} \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 \left (-c^2\right )^{3/2} e x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {d+e x}}+\frac {4 b c \sqrt {c^2 x^2+1} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 \left (-c^2\right )^{3/2} e x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}}} \]

[Out]

2/3*(e*x+d)^(3/2)*(a+b*arccsch(c*x))/e^2-2*d*(a+b*arccsch(c*x))*(e*x+d)^(1/2)/e^2+8/3*b*d^2*EllipticPi(1/2*(1-
(-c^2)^(1/2)*x)^(1/2)*2^(1/2),2,2^(1/2)*(e/(d*(-c^2)^(1/2)+e))^(1/2))*(c^2*x^2+1)^(1/2)*((e*x+d)*(-c^2)^(1/2)/
(d*(-c^2)^(1/2)+e))^(1/2)/c/e^2/x/(1+1/c^2/x^2)^(1/2)/(e*x+d)^(1/2)+4/3*b*c*EllipticE(1/2*(1-(-c^2)^(1/2)*x)^(
1/2)*2^(1/2),(-2*e*(-c^2)^(1/2)/(c^2*d-e*(-c^2)^(1/2)))^(1/2))*(e*x+d)^(1/2)*(c^2*x^2+1)^(1/2)/(-c^2)^(3/2)/e/
x/(1+1/c^2/x^2)^(1/2)/(c^2*(e*x+d)/(c^2*d-e*(-c^2)^(1/2)))^(1/2)-8/3*b*c*d*EllipticF(1/2*(1-(-c^2)^(1/2)*x)^(1
/2)*2^(1/2),(-2*e*(-c^2)^(1/2)/(c^2*d-e*(-c^2)^(1/2)))^(1/2))*(c^2*x^2+1)^(1/2)*(c^2*(e*x+d)/(c^2*d-e*(-c^2)^(
1/2)))^(1/2)/(-c^2)^(3/2)/e/x/(1+1/c^2/x^2)^(1/2)/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.75, antiderivative size = 474, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 13, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.684, Rules used = {43, 6310, 12, 6721, 6742, 719, 424, 944, 419, 932, 168, 538, 537} \[ -\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {8 b d^2 \sqrt {c^2 x^2+1} \sqrt {\frac {\sqrt {-c^2} (d+e x)}{\sqrt {-c^2} d+e}} \Pi \left (2;\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|\frac {2 e}{\sqrt {-c^2} d+e}\right )}{3 c e^2 x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {d+e x}}-\frac {8 b c d \sqrt {c^2 x^2+1} \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 \left (-c^2\right )^{3/2} e x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {d+e x}}+\frac {4 b c \sqrt {c^2 x^2+1} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 \left (-c^2\right )^{3/2} e x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcCsch[c*x]))/Sqrt[d + e*x],x]

[Out]

(-2*d*Sqrt[d + e*x]*(a + b*ArcCsch[c*x]))/e^2 + (2*(d + e*x)^(3/2)*(a + b*ArcCsch[c*x]))/(3*e^2) + (4*b*c*Sqrt
[d + e*x]*Sqrt[1 + c^2*x^2]*EllipticE[ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]], (-2*Sqrt[-c^2]*e)/(c^2*d - Sqrt[
-c^2]*e)])/(3*(-c^2)^(3/2)*e*Sqrt[1 + 1/(c^2*x^2)]*x*Sqrt[(c^2*(d + e*x))/(c^2*d - Sqrt[-c^2]*e)]) - (8*b*c*d*
Sqrt[(c^2*(d + e*x))/(c^2*d - Sqrt[-c^2]*e)]*Sqrt[1 + c^2*x^2]*EllipticF[ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]
], (-2*Sqrt[-c^2]*e)/(c^2*d - Sqrt[-c^2]*e)])/(3*(-c^2)^(3/2)*e*Sqrt[1 + 1/(c^2*x^2)]*x*Sqrt[d + e*x]) + (8*b*
d^2*Sqrt[(Sqrt[-c^2]*(d + e*x))/(Sqrt[-c^2]*d + e)]*Sqrt[1 + c^2*x^2]*EllipticPi[2, ArcSin[Sqrt[1 - Sqrt[-c^2]
*x]/Sqrt[2]], (2*e)/(Sqrt[-c^2]*d + e)])/(3*c*e^2*Sqrt[1 + 1/(c^2*x^2)]*x*Sqrt[d + e*x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 932

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-(c
/a), 2]}, Dist[1/Sqrt[a], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]), x], x]] /; FreeQ[{a, c,
 d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 944

Int[Sqrt[(f_.) + (g_.)*(x_)]/(((d_.) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[g/e, Int[1/(S
qrt[f + g*x]*Sqrt[a + c*x^2]), x], x] + Dist[(e*f - d*g)/e, Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]), x
], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0]

Rule 6310

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Dist[a + b*ArcCsch[c*x],
v, x] + Dist[b/c, Int[SimplifyIntegrand[v/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x], x] /; InverseFunctionFreeQ[v, x
]] /; FreeQ[{a, b, c}, x]

Rule 6721

Int[(u_.)*((a_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(b^IntPart[p]*(a + b*x^n)^FracPart[p])/(x^(n*FracP
art[p])*(1 + a/(x^n*b))^FracPart[p]), Int[u*x^(n*p)*(1 + a/(x^n*b))^p, x], x] /; FreeQ[{a, b, p}, x] &&  !Inte
gerQ[p] && ILtQ[n, 0] &&  !RationalFunctionQ[u, x] && IntegerQ[p + 1/2]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x}} \, dx &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {b \int \frac {2 (-2 d+e x) \sqrt {d+e x}}{3 e^2 \sqrt {1+\frac {1}{c^2 x^2}} x^2} \, dx}{c}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {(2 b) \int \frac {(-2 d+e x) \sqrt {d+e x}}{\sqrt {1+\frac {1}{c^2 x^2}} x^2} \, dx}{3 c e^2}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {\left (2 b \sqrt {1+c^2 x^2}\right ) \int \frac {(-2 d+e x) \sqrt {d+e x}}{x \sqrt {1+c^2 x^2}} \, dx}{3 c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {\left (2 b \sqrt {1+c^2 x^2}\right ) \int \left (\frac {e \sqrt {d+e x}}{\sqrt {1+c^2 x^2}}-\frac {2 d \sqrt {d+e x}}{x \sqrt {1+c^2 x^2}}\right ) \, dx}{3 c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}-\frac {\left (4 b d \sqrt {1+c^2 x^2}\right ) \int \frac {\sqrt {d+e x}}{x \sqrt {1+c^2 x^2}} \, dx}{3 c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x}+\frac {\left (2 b \sqrt {1+c^2 x^2}\right ) \int \frac {\sqrt {d+e x}}{\sqrt {1+c^2 x^2}} \, dx}{3 c e \sqrt {1+\frac {1}{c^2 x^2}} x}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}-\frac {\left (4 b d^2 \sqrt {1+c^2 x^2}\right ) \int \frac {1}{x \sqrt {d+e x} \sqrt {1+c^2 x^2}} \, dx}{3 c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x}-\frac {\left (4 b d \sqrt {1+c^2 x^2}\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {1+c^2 x^2}} \, dx}{3 c e \sqrt {1+\frac {1}{c^2 x^2}} x}+\frac {\left (4 b \sqrt {-c^2} \sqrt {d+e x} \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {2 \sqrt {-c^2} e x^2}{c^2 d-\sqrt {-c^2} e}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )}{3 c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}}}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {4 b \sqrt {-c^2} \sqrt {d+e x} \sqrt {1+c^2 x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}}}-\frac {\left (4 b d^2 \sqrt {1+c^2 x^2}\right ) \int \frac {1}{x \sqrt {1-\sqrt {-c^2} x} \sqrt {1+\sqrt {-c^2} x} \sqrt {d+e x}} \, dx}{3 c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x}-\frac {\left (8 b \sqrt {-c^2} d \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 \sqrt {-c^2} e x^2}{c^2 d-\sqrt {-c^2} e}}} \, dx,x,\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )}{3 c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {4 b \sqrt {-c^2} \sqrt {d+e x} \sqrt {1+c^2 x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}}}-\frac {8 b \sqrt {-c^2} d \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \sqrt {1+c^2 x^2} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}+\frac {\left (8 b d^2 \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {d+\frac {e}{\sqrt {-c^2}}-\frac {e x^2}{\sqrt {-c^2}}}} \, dx,x,\sqrt {1-\sqrt {-c^2} x}\right )}{3 c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {4 b \sqrt {-c^2} \sqrt {d+e x} \sqrt {1+c^2 x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}}}-\frac {8 b \sqrt {-c^2} d \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \sqrt {1+c^2 x^2} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}+\frac {\left (8 b d^2 \sqrt {1+c^2 x^2} \sqrt {1+\frac {e \left (-1+\sqrt {-c^2} x\right )}{\sqrt {-c^2} d+e}}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {1-\frac {e x^2}{\sqrt {-c^2} \left (d+\frac {e}{\sqrt {-c^2}}\right )}}} \, dx,x,\sqrt {1-\sqrt {-c^2} x}\right )}{3 c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^2}+\frac {4 b \sqrt {-c^2} \sqrt {d+e x} \sqrt {1+c^2 x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}}}-\frac {8 b \sqrt {-c^2} d \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \sqrt {1+c^2 x^2} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{3 c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}+\frac {8 b d^2 \sqrt {1+c^2 x^2} \sqrt {1-\frac {e \left (1-\sqrt {-c^2} x\right )}{\sqrt {-c^2} d+e}} \Pi \left (2;\sin ^{-1}\left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )|\frac {2 e}{\sqrt {-c^2} d+e}\right )}{3 c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.34, size = 343, normalized size = 0.72 \[ \frac {2 \left (a \sqrt {d+e x} (e x-2 d)+\frac {2 b \sqrt {-\frac {e (c x-i)}{c d+i e}} \sqrt {-\frac {e (c x+i)}{c d-i e}} \left ((e+i c d) F\left (i \sinh ^{-1}\left (\sqrt {-\frac {c}{c d-i e}} \sqrt {d+e x}\right )|\frac {c d-i e}{c d+i e}\right )+(-e+i c d) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {c}{c d-i e}} \sqrt {d+e x}\right )|\frac {c d-i e}{c d+i e}\right )-2 i c d \Pi \left (1-\frac {i e}{c d};i \sinh ^{-1}\left (\sqrt {-\frac {c}{c d-i e}} \sqrt {d+e x}\right )|\frac {c d-i e}{c d+i e}\right )\right )}{c^2 x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {-\frac {c}{c d-i e}}}+b \text {csch}^{-1}(c x) \sqrt {d+e x} (e x-2 d)\right )}{3 e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcCsch[c*x]))/Sqrt[d + e*x],x]

[Out]

(2*(a*(-2*d + e*x)*Sqrt[d + e*x] + b*(-2*d + e*x)*Sqrt[d + e*x]*ArcCsch[c*x] + (2*b*Sqrt[-((e*(-I + c*x))/(c*d
 + I*e))]*Sqrt[-((e*(I + c*x))/(c*d - I*e))]*((I*c*d - e)*EllipticE[I*ArcSinh[Sqrt[-(c/(c*d - I*e))]*Sqrt[d +
e*x]], (c*d - I*e)/(c*d + I*e)] + (I*c*d + e)*EllipticF[I*ArcSinh[Sqrt[-(c/(c*d - I*e))]*Sqrt[d + e*x]], (c*d
- I*e)/(c*d + I*e)] - (2*I)*c*d*EllipticPi[1 - (I*e)/(c*d), I*ArcSinh[Sqrt[-(c/(c*d - I*e))]*Sqrt[d + e*x]], (
c*d - I*e)/(c*d + I*e)]))/(c^2*Sqrt[-(c/(c*d - I*e))]*Sqrt[1 + 1/(c^2*x^2)]*x)))/(3*e^2)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x}{\sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)*x/sqrt(e*x + d), x)

________________________________________________________________________________________

maple [C]  time = 0.07, size = 868, normalized size = 1.83 \[ \frac {2 a \left (\frac {\left (e x +d \right )^{\frac {3}{2}}}{3}-d \sqrt {e x +d}\right )+2 b \left (\frac {\left (e x +d \right )^{\frac {3}{2}} \mathrm {arccsch}\left (c x \right )}{3}-\mathrm {arccsch}\left (c x \right ) d \sqrt {e x +d}-\frac {2 \sqrt {-\frac {i \left (e x +d \right ) c e +\left (e x +d \right ) c^{2} d -c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i \left (e x +d \right ) c e -\left (e x +d \right ) c^{2} d +c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (2 i \EllipticF \left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right ) c d e -\EllipticF \left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right ) c^{2} d^{2}-\EllipticE \left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right ) c^{2} d^{2}-2 i \EllipticPi \left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right ) c d e +2 \EllipticPi \left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right ) c^{2} d^{2}+\EllipticF \left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right ) e^{2}-\EllipticE \left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right ) e^{2}\right )}{3 c^{2} \sqrt {\frac {\left (e x +d \right )^{2} c^{2}-2 \left (e x +d \right ) c^{2} d +c^{2} d^{2}+e^{2}}{c^{2} x^{2} e^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}\, \left (-c d +i e \right )}\right )}{e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arccsch(c*x))/(e*x+d)^(1/2),x)

[Out]

2/e^2*(a*(1/3*(e*x+d)^(3/2)-d*(e*x+d)^(1/2))+b*(1/3*(e*x+d)^(3/2)*arccsch(c*x)-arccsch(c*x)*d*(e*x+d)^(1/2)-2/
3/c^2*(-(I*(e*x+d)*c*e+(e*x+d)*c^2*d-c^2*d^2-e^2)/(c^2*d^2+e^2))^(1/2)*((I*(e*x+d)*c*e-(e*x+d)*c^2*d+c^2*d^2+e
^2)/(c^2*d^2+e^2))^(1/2)*(2*I*EllipticF((e*x+d)^(1/2)*((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2),(-(2*I*c*d*e-c^2*d^2+e
^2)/(c^2*d^2+e^2))^(1/2))*c*d*e-EllipticF((e*x+d)^(1/2)*((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2),(-(2*I*c*d*e-c^2*d^2
+e^2)/(c^2*d^2+e^2))^(1/2))*c^2*d^2-EllipticE((e*x+d)^(1/2)*((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2),(-(2*I*c*d*e-c^2
*d^2+e^2)/(c^2*d^2+e^2))^(1/2))*c^2*d^2-2*I*EllipticPi((e*x+d)^(1/2)*((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2),1/(I*e+
c*d)/c*(c^2*d^2+e^2)/d,(-(I*e-c*d)*c/(c^2*d^2+e^2))^(1/2)/((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2))*c*d*e+2*EllipticP
i((e*x+d)^(1/2)*((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2),1/(I*e+c*d)/c*(c^2*d^2+e^2)/d,(-(I*e-c*d)*c/(c^2*d^2+e^2))^(
1/2)/((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2))*c^2*d^2+EllipticF((e*x+d)^(1/2)*((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2),(-(2
*I*c*d*e-c^2*d^2+e^2)/(c^2*d^2+e^2))^(1/2))*e^2-EllipticE((e*x+d)^(1/2)*((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2),(-(2
*I*c*d*e-c^2*d^2+e^2)/(c^2*d^2+e^2))^(1/2))*e^2)/(((e*x+d)^2*c^2-2*(e*x+d)*c^2*d+c^2*d^2+e^2)/c^2/x^2/e^2)^(1/
2)/x/((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2)/(I*e-c*d)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {2}{3} \, a {\left (\frac {{\left (e x + d\right )}^{\frac {3}{2}}}{e^{2}} - \frac {3 \, \sqrt {e x + d} d}{e^{2}}\right )} + \frac {1}{3} \, b {\left (\frac {2 \, {\left (e^{2} x^{2} - d e x - 2 \, d^{2}\right )} \log \left (\sqrt {c^{2} x^{2} + 1} + 1\right )}{\sqrt {e x + d} e^{2}} + 3 \, \int \frac {2 \, {\left (c^{2} e^{2} x^{3} - c^{2} d e x^{2} - 2 \, c^{2} d^{2} x\right )}}{3 \, {\left ({\left (c^{2} e^{2} x^{2} + e^{2}\right )} \sqrt {c^{2} x^{2} + 1} \sqrt {e x + d} + {\left (c^{2} e^{2} x^{2} + e^{2}\right )} \sqrt {e x + d}\right )}}\,{d x} - 3 \, \int -\frac {2 \, c^{2} d e x^{2} - {\left (3 \, e^{2} \log \relax (c) + 2 \, e^{2}\right )} c^{2} x^{3} + {\left (4 \, c^{2} d^{2} - 3 \, e^{2} \log \relax (c)\right )} x - 3 \, {\left (c^{2} e^{2} x^{3} + e^{2} x\right )} \log \relax (x)}{3 \, {\left (c^{2} e^{2} x^{2} + e^{2}\right )} \sqrt {e x + d}}\,{d x}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

2/3*a*((e*x + d)^(3/2)/e^2 - 3*sqrt(e*x + d)*d/e^2) + 1/3*b*(2*(e^2*x^2 - d*e*x - 2*d^2)*log(sqrt(c^2*x^2 + 1)
 + 1)/(sqrt(e*x + d)*e^2) + 3*integrate(2/3*(c^2*e^2*x^3 - c^2*d*e*x^2 - 2*c^2*d^2*x)/((c^2*e^2*x^2 + e^2)*sqr
t(c^2*x^2 + 1)*sqrt(e*x + d) + (c^2*e^2*x^2 + e^2)*sqrt(e*x + d)), x) - 3*integrate(-1/3*(2*c^2*d*e*x^2 - (3*e
^2*log(c) + 2*e^2)*c^2*x^3 + (4*c^2*d^2 - 3*e^2*log(c))*x - 3*(c^2*e^2*x^3 + e^2*x)*log(x))/((c^2*e^2*x^2 + e^
2)*sqrt(e*x + d)), x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{\sqrt {d+e\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*asinh(1/(c*x))))/(d + e*x)^(1/2),x)

[Out]

int((x*(a + b*asinh(1/(c*x))))/(d + e*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (a + b \operatorname {acsch}{\left (c x \right )}\right )}{\sqrt {d + e x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*acsch(c*x))/(e*x+d)**(1/2),x)

[Out]

Integral(x*(a + b*acsch(c*x))/sqrt(d + e*x), x)

________________________________________________________________________________________